Rational points on cubic hypersurfaces that split off two forms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Points on Cubic Hypersurfaces That Split off a Form

— Let X be a projective cubic hypersurface of dimension 11 or more, which is defined over Q. We show that X(Q) is non-empty provided that the cubic form defining X can be written as the sum of two forms that share no common variables.

متن کامل

Counting Rational Points on Cubic Hypersurfaces: Corrigendum

R0<b162R0 gcd(b1, N )1/2 R 0 (HP) . The second line is false and in fact one has M1 = 1 in Proposition 3. The author is very grateful to Professor Hongze Li for drawing his attention to this flaw. The error can be fixed by introducing an average over b1 into the statement of Proposition 3. This allows us to recover the main theorem in [1], and also [2, Lemma 11], via the following modification....

متن کامل

Counting Rational Points on Cubic Hypersurfaces

Let X ⊂ P be a geometrically integral cubic hypersurface defined over Q, with singular locus of dimension 6 dimX − 4. Then the main result in this paper is a proof of the fact that X(Q) contains Oε,X(B ) points of height at most B.

متن کامل

RATIONAL POINTS ON CUBIC HYPERSURFACES OVER Fq(t)

The Hasse principle and weak approximation is established for non-singular cubic hypersurfaces X over the function field Fq(t), provided that char(Fq) > 3 and X has dimension at least 6.

متن کامل

Rational Points on Intersections of Cubic and Quadric Hypersurfaces

We investigate the Hasse principle for complete intersections cut out by a quadric and cubic hypersurface defined over the rational numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the London Mathematical Society

سال: 2013

ISSN: 0024-6093

DOI: 10.1112/blms/bdt084